Copied to
clipboard

G = C42.171D6order 192 = 26·3

171st non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.171D6, C6.342- 1+4, C4:Q8:9S3, C4.37(S3xD4), C4:C4.122D6, (C4xS3).13D4, D6.48(C2xD4), C12.69(C2xD4), D6:Q8:47C2, (C2xQ8).167D6, C6.98(C22xD4), C42:2S3:25C2, C42:7S3:26C2, D6.D4:45C2, (C2xC6).268C24, D6:C4.49C22, Dic3.53(C2xD4), Dic3:Q8:26C2, C12.23D4:25C2, (C2xC12).101C23, (C4xC12).209C22, (C6xQ8).135C22, (C2xD12).171C22, C22.289(S3xC23), Dic3:C4.165C22, (C22xS3).230C23, C2.35(Q8.15D6), C3:5(C23.38C23), (C2xDic6).188C22, (C4xDic3).159C22, (C2xDic3).140C23, (C2xS3xQ8):12C2, C2.71(C2xS3xD4), (C3xC4:Q8):10C2, (S3xC2xC4).142C22, (C2xQ8:3S3).7C2, (C3xC4:C4).211C22, (C2xC4).217(C22xS3), SmallGroup(192,1283)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C42.171D6
C1C3C6C2xC6C22xS3S3xC2xC4C2xS3xQ8 — C42.171D6
C3C2xC6 — C42.171D6
C1C22C4:Q8

Generators and relations for C42.171D6
 G = < a,b,c,d | a4=b4=1, c6=d2=a2, ab=ba, cac-1=dad-1=a-1, cbc-1=b-1, dbd-1=a2b-1, dcd-1=c5 >

Subgroups: 688 in 270 conjugacy classes, 103 normal (29 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, C2xC4, D4, Q8, C23, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C42, C42, C22:C4, C4:C4, C4:C4, C22xC4, C2xD4, C2xQ8, C2xQ8, C4oD4, Dic6, C4xS3, C4xS3, D12, C2xDic3, C2xDic3, C2xC12, C2xC12, C3xQ8, C22xS3, C22xS3, C42:C2, C22:Q8, C22.D4, C4.4D4, C4:Q8, C4:Q8, C22xQ8, C2xC4oD4, C4xDic3, Dic3:C4, D6:C4, C4xC12, C3xC4:C4, C2xDic6, C2xDic6, S3xC2xC4, S3xC2xC4, C2xD12, C2xD12, S3xQ8, Q8:3S3, C6xQ8, C23.38C23, C42:2S3, C42:7S3, D6.D4, D6:Q8, Dic3:Q8, C12.23D4, C3xC4:Q8, C2xS3xQ8, C2xQ8:3S3, C42.171D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C24, C22xS3, C22xD4, 2- 1+4, S3xD4, S3xC23, C23.38C23, C2xS3xD4, Q8.15D6, C42.171D6

Smallest permutation representation of C42.171D6
On 96 points
Generators in S96
(1 52 7 58)(2 59 8 53)(3 54 9 60)(4 49 10 55)(5 56 11 50)(6 51 12 57)(13 26 19 32)(14 33 20 27)(15 28 21 34)(16 35 22 29)(17 30 23 36)(18 25 24 31)(37 64 43 70)(38 71 44 65)(39 66 45 72)(40 61 46 67)(41 68 47 62)(42 63 48 69)(73 96 79 90)(74 91 80 85)(75 86 81 92)(76 93 82 87)(77 88 83 94)(78 95 84 89)
(1 82 33 46)(2 47 34 83)(3 84 35 48)(4 37 36 73)(5 74 25 38)(6 39 26 75)(7 76 27 40)(8 41 28 77)(9 78 29 42)(10 43 30 79)(11 80 31 44)(12 45 32 81)(13 92 57 72)(14 61 58 93)(15 94 59 62)(16 63 60 95)(17 96 49 64)(18 65 50 85)(19 86 51 66)(20 67 52 87)(21 88 53 68)(22 69 54 89)(23 90 55 70)(24 71 56 91)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 42 7 48)(2 47 8 41)(3 40 9 46)(4 45 10 39)(5 38 11 44)(6 43 12 37)(13 90 19 96)(14 95 20 89)(15 88 21 94)(16 93 22 87)(17 86 23 92)(18 91 24 85)(25 74 31 80)(26 79 32 73)(27 84 33 78)(28 77 34 83)(29 82 35 76)(30 75 36 81)(49 66 55 72)(50 71 56 65)(51 64 57 70)(52 69 58 63)(53 62 59 68)(54 67 60 61)

G:=sub<Sym(96)| (1,52,7,58)(2,59,8,53)(3,54,9,60)(4,49,10,55)(5,56,11,50)(6,51,12,57)(13,26,19,32)(14,33,20,27)(15,28,21,34)(16,35,22,29)(17,30,23,36)(18,25,24,31)(37,64,43,70)(38,71,44,65)(39,66,45,72)(40,61,46,67)(41,68,47,62)(42,63,48,69)(73,96,79,90)(74,91,80,85)(75,86,81,92)(76,93,82,87)(77,88,83,94)(78,95,84,89), (1,82,33,46)(2,47,34,83)(3,84,35,48)(4,37,36,73)(5,74,25,38)(6,39,26,75)(7,76,27,40)(8,41,28,77)(9,78,29,42)(10,43,30,79)(11,80,31,44)(12,45,32,81)(13,92,57,72)(14,61,58,93)(15,94,59,62)(16,63,60,95)(17,96,49,64)(18,65,50,85)(19,86,51,66)(20,67,52,87)(21,88,53,68)(22,69,54,89)(23,90,55,70)(24,71,56,91), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,42,7,48)(2,47,8,41)(3,40,9,46)(4,45,10,39)(5,38,11,44)(6,43,12,37)(13,90,19,96)(14,95,20,89)(15,88,21,94)(16,93,22,87)(17,86,23,92)(18,91,24,85)(25,74,31,80)(26,79,32,73)(27,84,33,78)(28,77,34,83)(29,82,35,76)(30,75,36,81)(49,66,55,72)(50,71,56,65)(51,64,57,70)(52,69,58,63)(53,62,59,68)(54,67,60,61)>;

G:=Group( (1,52,7,58)(2,59,8,53)(3,54,9,60)(4,49,10,55)(5,56,11,50)(6,51,12,57)(13,26,19,32)(14,33,20,27)(15,28,21,34)(16,35,22,29)(17,30,23,36)(18,25,24,31)(37,64,43,70)(38,71,44,65)(39,66,45,72)(40,61,46,67)(41,68,47,62)(42,63,48,69)(73,96,79,90)(74,91,80,85)(75,86,81,92)(76,93,82,87)(77,88,83,94)(78,95,84,89), (1,82,33,46)(2,47,34,83)(3,84,35,48)(4,37,36,73)(5,74,25,38)(6,39,26,75)(7,76,27,40)(8,41,28,77)(9,78,29,42)(10,43,30,79)(11,80,31,44)(12,45,32,81)(13,92,57,72)(14,61,58,93)(15,94,59,62)(16,63,60,95)(17,96,49,64)(18,65,50,85)(19,86,51,66)(20,67,52,87)(21,88,53,68)(22,69,54,89)(23,90,55,70)(24,71,56,91), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,42,7,48)(2,47,8,41)(3,40,9,46)(4,45,10,39)(5,38,11,44)(6,43,12,37)(13,90,19,96)(14,95,20,89)(15,88,21,94)(16,93,22,87)(17,86,23,92)(18,91,24,85)(25,74,31,80)(26,79,32,73)(27,84,33,78)(28,77,34,83)(29,82,35,76)(30,75,36,81)(49,66,55,72)(50,71,56,65)(51,64,57,70)(52,69,58,63)(53,62,59,68)(54,67,60,61) );

G=PermutationGroup([[(1,52,7,58),(2,59,8,53),(3,54,9,60),(4,49,10,55),(5,56,11,50),(6,51,12,57),(13,26,19,32),(14,33,20,27),(15,28,21,34),(16,35,22,29),(17,30,23,36),(18,25,24,31),(37,64,43,70),(38,71,44,65),(39,66,45,72),(40,61,46,67),(41,68,47,62),(42,63,48,69),(73,96,79,90),(74,91,80,85),(75,86,81,92),(76,93,82,87),(77,88,83,94),(78,95,84,89)], [(1,82,33,46),(2,47,34,83),(3,84,35,48),(4,37,36,73),(5,74,25,38),(6,39,26,75),(7,76,27,40),(8,41,28,77),(9,78,29,42),(10,43,30,79),(11,80,31,44),(12,45,32,81),(13,92,57,72),(14,61,58,93),(15,94,59,62),(16,63,60,95),(17,96,49,64),(18,65,50,85),(19,86,51,66),(20,67,52,87),(21,88,53,68),(22,69,54,89),(23,90,55,70),(24,71,56,91)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,42,7,48),(2,47,8,41),(3,40,9,46),(4,45,10,39),(5,38,11,44),(6,43,12,37),(13,90,19,96),(14,95,20,89),(15,88,21,94),(16,93,22,87),(17,86,23,92),(18,91,24,85),(25,74,31,80),(26,79,32,73),(27,84,33,78),(28,77,34,83),(29,82,35,76),(30,75,36,81),(49,66,55,72),(50,71,56,65),(51,64,57,70),(52,69,58,63),(53,62,59,68),(54,67,60,61)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C···4H4I4J4K4L4M4N6A6B6C12A···12F12G12H12I12J
order122222223444···444444466612···1212121212
size11116612122224···466121212122224···48888

36 irreducible representations

dim111111111122222444
type+++++++++++++++-+
imageC1C2C2C2C2C2C2C2C2C2S3D4D6D6D62- 1+4S3xD4Q8.15D6
kernelC42.171D6C42:2S3C42:7S3D6.D4D6:Q8Dic3:Q8C12.23D4C3xC4:Q8C2xS3xQ8C2xQ8:3S3C4:Q8C4xS3C42C4:C4C2xQ8C6C4C2
# reps111441111114142224

Matrix representation of C42.171D6 in GL8(F13)

120000000
012000000
001200000
000120000
00003486
00009365
000040104
000009910
,
120000000
012000000
000120000
00100000
00000100
000012000
000000012
00000010
,
012000000
112000000
00010000
00100000
0000012110
0000120011
00001001
00000110
,
121000000
01000000
00010000
00100000
000001200
00001000
0000120012
00000110

G:=sub<GL(8,GF(13))| [12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,3,9,4,0,0,0,0,0,4,3,0,9,0,0,0,0,8,6,10,9,0,0,0,0,6,5,4,10],[12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0],[0,1,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,12,0,0,1,0,0,0,0,11,0,0,1,0,0,0,0,0,11,1,0],[12,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,12,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0] >;

C42.171D6 in GAP, Magma, Sage, TeX

C_4^2._{171}D_6
% in TeX

G:=Group("C4^2.171D6");
// GroupNames label

G:=SmallGroup(192,1283);
// by ID

G=gap.SmallGroup(192,1283);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,219,100,675,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=d^2=a^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<